• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Datadoodle

  • Subscribe
  • About Datadoodle and me
  • Feedback
  • Special projects
Home » Execs vs. data analysts gives us the Analytics Gap

Execs vs. data analysts gives us the Analytics Gap

June 5, 2013 by Ted Cuzzillo

One insurance company’s chief data scientist is “terrific at what he does,” says his boss, even “brilliant.” The company is lucky to have him. But he never sees the inside of the executive suite.

“He is a quirky, quirky guy,” says the boss, “and he is a super powerful dude in what he’s doing for us.” But upper executives would judge him harshly. “There would be a terrible outcome.”

Let’s call it the Analytics Gap. At least in this company and probably in many others, some of those who interpret the data don’t stick to rigid, unspoken rules of behavior. And those who with the greatest executive authority can’t quite appreciate what these people can tell them.

“These [analysts], including me,” says the analyst’s boss, “we’re different.” The brilliant data scientist — who as a hobby builds computers from video cards because “‘there’s a lot of power in video cards'” — makes a bad impression in person. He wanders off topic and, for example, has been known to digress into world politics and weird analogies.

“When I hear something come out his mouth that’s a little off color,” the boss says, “I chalk it up to his brilliance.” The company’s top executives, on the other hand, are “a harsh crowd.”

This crowd judges the off-color analyst harshly and fails, for example, to appreciate the real meaning of his risk models and other aspects of advanced analytics. They isolate themselves from the abstract evidence in data analysis that could correct or at least be reminded of their own biases.

The executives tell the analyst’s boss they want that. “I say that if you want that, you have to realize you’re dealing with people whose skill sets are completely different from anything you’ve dealt with. In a perfect world, my chief executive officer would say, ‘I understand how his analysis is applicable.’ No. Nothing.” They just don’t respect what he has to offer.

We’ve seen the work of harsh crowds before. Didn’t we just witness something like this on Wall Street? Those who knew the data saw the mortgage meltdown coming. But those who could have prevented it either dismissed the warnings or misunderstood them. What idiots, we say now. They should be jailed or made to work at Panda Express the rest of their working lives.

Potential consequences of the Analytics Gap are mostly minor by comparison but more widespread and chronic.

“I don’t think it’s a stretch to suggest that micro-versions of [the meltdown] could happen in product development, pricing, marketing, risk, and other domains” — unless data analysts and executive leadership come to understand each other. 

Why not train more quants? It won’t work, he says. Generally, those interested in data analysis tend to be too technically minded for management.

Filed Under: analysis & methods Tagged With: analysis, analyst, analysts, analytics, BI, data analysis, data analyst, data analysts, politics Leave a Comment

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

smarter cities & data narrative

Two recent “storytelling” tools for public audiences Toucan spoonfeeds data’s insight while Juicebox cultivates data skills

The data-shy among us have two friends in the software business. One a few years old and one new this year. Nashville, Tennessee-based Juice Analytics … [Read More...] about Two recent “storytelling” tools for public audiences Toucan spoonfeeds data’s insight while Juicebox cultivates data skills

...and still more

  • This is Datadoodle
  • Civic tech projects need storytellers
  • Democratic pollster: Hillary campaign’s data malpractice
  • Narrative and analytics: brothers
  • Malcolm Gladwell: why oral data’s different

More Posts from this Category

Copyright © 2025 · eleven40 Pro on Genesis Framework · WordPress · Log in

  • Home
  • About Datadoodle and me
  • 2004 to 2019
  • Contact Ted
  • Subscribe